詳細(xì)介紹
一體化污水提升泵站
一體化污水提升泵站——簡介
在水處理技術(shù)中,吸附技術(shù)非常悠久。早在一百年前,人們就開始使用活性炭進(jìn)行水的凈化。但是由于活性炭價格昂貴,長期以來,主要集中在飲用水深度處理領(lǐng)域,典型工藝路線為“臭氧+生物活性炭”,目前已成為控制飲用水中微污染物的主流技術(shù)。在家用凈水器中,活性炭柱也是標(biāo)配。可以說,活性炭吸附水處理技術(shù)是*的技術(shù)。
活性炭的吸附主要靠內(nèi)部的孔道。按照純粹與應(yīng)用化學(xué)協(xié)會(IUPAC)的定義:孔徑小于2納米的稱為微孔,孔徑在2到50納米之間的稱為中孔,孔徑大于50納米的稱為大孔。在吸附過程中,大孔是物質(zhì)傳輸?shù)耐ǖ?,中孔和微孔是吸附位點。一個合理的吸附劑需要與被吸附的污染物進(jìn)行匹配,即空間位阻效應(yīng)。
在工業(yè)應(yīng)用中,常采用碘值來表征比表面積尤其是微孔的表面積,微孔活性炭的比表面積一般為800-0m2/g。長期以來,活性炭的應(yīng)用(水處理)和生產(chǎn)(煤化工)脫節(jié),生產(chǎn)單位不清楚用戶的需求,用戶的需求無法有效傳遞給生產(chǎn),在活性炭的使用中普遍存在“萬金油”現(xiàn)象,應(yīng)用需求和炭種不匹配,造成大量的資源浪費,也一定程度上限制了吸附水處理技術(shù)的發(fā)展。
處理工藝的選擇
1、污水水量與水質(zhì)情況分析
1)本項目污水來水不均勻程度較高,水質(zhì)、水量變化較大,由于水量與水質(zhì)具有較大的不均勻性,因此必須考慮設(shè)置均質(zhì)均量的調(diào)節(jié)池。
2)本類污水BOD/COD值約0.5,可生化性較高。
3)根據(jù)環(huán)保部門對污水排放的要求,本污水處理工藝除了去除有機物外還應(yīng)能去除氨氮,使出水達(dá)到排放要求。
2、選擇思路
根據(jù)上述進(jìn)出水水量和水質(zhì)的情況,投標(biāo)方考慮污水處理工藝的選擇必須依照如下思路:
1)總體思路采用成熟可靠的A/O生物接觸氧化法為處理工藝,同時輔以格柵攔截、沉淀池澄清等物化處理手段;
2)首先通過格柵攔截,對污水進(jìn)行預(yù)處理,目的是初步降低無機顆粒物質(zhì)的含量,以免磨損及堵塞提升泵;污水自流進(jìn)入調(diào)節(jié)池進(jìn)行水質(zhì)水量的調(diào)節(jié),經(jīng)調(diào)節(jié)后的污水由提升泵定量提升通過缺氧好氧A/O生物接觸氧化法,利用生物膜的作用使有機污染物首先轉(zhuǎn)化為氨氮,同時通過好氧硝化和缺氧反硝化過程既去除有機物又去除了氨氮。生化池配以新型的組合填料,該填料具有負(fù)荷高、施工簡易、體積小、運行穩(wěn)定可靠、管理方便、維修更換方便等優(yōu)點;生化池的出水進(jìn)入沉淀池進(jìn)行固液分離,沉淀池具有固液分離效果好、投資省、沖擊負(fù)荷和溫度變化適應(yīng)能力強、施工簡易等特點;沉淀池出水后能確保污水經(jīng)處理后各項指標(biāo)全面達(dá)標(biāo)。
3)工藝流程簡捷、工程造價低、運行經(jīng)濟、便于管理。
中試主要結(jié)果
北京某研究院于2016年初立項研究脫硫廢水*技術(shù), 并在前期技術(shù)積累和充分調(diào)研的基礎(chǔ)上形成了常溫結(jié)晶分鹽*工藝。通過基礎(chǔ)實驗驗證工作原理并在小試系統(tǒng)上驗證初步可行后, 于2017年在福建某電廠進(jìn)行了現(xiàn)場中試驗證。中試系統(tǒng)包括石灰軟化、ATC-NF、ED-RO等3個單元, 原水處理規(guī)模約為1.1 m3/h, NF產(chǎn)水約為1.0 m3/h。中試采用的脫硫廢水中鎂、鈣和硫酸根的質(zhì)量濃度分別在3~5、1.3~2.5、5~10 g/L波動。
隨著MnFe2O4濃度的升高, MnFe2O4對溶液中釩的吸附率呈上升趨勢, 而吸附量的變化則相反, 呈下降趨勢.MnFe2O4濃度為0.4~4.0 g·L-1時, 釩的吸附速率逐步上升, MnFe2O4濃度為4.0 g·L-1時, 吸附率達(dá)到大值64.32%.這可能是因為隨著MnFe2O4濃度增加, 增大了吸附劑的表面積和有效活性位點;繼續(xù)增加MnFe2O4濃度時, 溶液中釩濃度降低, 而MnFe2O4顆粒表面總吸附位增加不明顯, MnFe2O4顆粒間產(chǎn)生相互碰撞和團聚效應(yīng), 導(dǎo)致有效活性位點減少, 吸附量減少(伊晨宇等, 2017).因此, 確定后續(xù)實驗MnFe2O4濃度為4.0 g·L-1, 即添加量為你好 mg.
pH值對釩吸附效果的
結(jié)果顯示, 在pH為2~9范圍內(nèi), 納米鐵錳氧化物(MnFe2O4)吸附釩(V5+)的效率呈先增后減的趨勢, MnFe2O4在酸性條件下對釩(V5+)的吸附效率較高, pH=4時吸附率達(dá)到大, 為51.94%.這可能是因為MnFe2O4在酸性條件下其表面存在Fe(OH)2+和FeO+或Mn(OH)2+和MnO+吸附中心(田喜強等, 2010), 在酸性條件下(pH>2), 溶液中的釩主要以釩酸根陰離子形式存在, 這時吸附劑表面帶正電荷的吸附中心能與V5+產(chǎn)生正負(fù)電荷吸附和表面化合作用, 因而有很好的吸附效果.在極低的pH(<2)時, 釩酸鹽以VO2+的形式存在, 不能與質(zhì)子化位點交換(Guzmán et al., 2002).相反, pH較大(>7)時吸附劑表面帶負(fù)電荷, 不利吸附發(fā)生(Hu et al., 2005).這與前人發(fā)現(xiàn)的納米鐵酸錳在pH=2時對Cr6+的吸附效果好相一致(田喜強等, 2010b).因此, 后續(xù)實驗溶液的pH值選擇為4.
時間對釩吸附效果的影響
MnFe2O4對釩的吸附呈先快后慢, 后趨平衡的特點.在0.5~6 h內(nèi), MnFe2O4對釩吸附量和吸附速率快速升高, 6~24 h內(nèi)增加平緩, 24 h時吸附量和吸附率達(dá)到大值, 分別為15.14 mg·g-1和60.54%.這是由于MnFe2O4吸附位點位于吸附劑外部, 吸附質(zhì)很容易進(jìn)入這些活性位點(田喜強等, 2010).隨著活性位點逐漸被占據(jù), V5+在表面吸附飽后則向MnFe2O4內(nèi)部遷移, 該過程是一種比較緩慢過程, 因而減緩了吸附速率.