污水處理設(shè)備 污泥處理設(shè)備 水處理過濾器 軟化水設(shè)備/除鹽設(shè)備 純凈水設(shè)備 消毒設(shè)備|加藥設(shè)備 供水/儲水/集水/排水/輔助 水處理膜 過濾器濾芯 水處理濾料 水處理劑 水處理填料 其它水處理設(shè)備
無錫國勁合金有限公司
閱讀:71發(fā)布時間:2017-2-10
隨著經(jīng)濟發(fā)展、技術(shù)進步和需求增加,鎳基耐蝕合金(N08810系列)越來越廣泛地應(yīng)用于石油、化工、冶金、環(huán)保及航天等眾多領(lǐng)域。Ti、Al是鎳基耐蝕合金中重要的組成元素,對合金組織、性能以及連鑄坯表面縱裂紋有著重要的影響。本文利用JMatPro模擬軟件、金相顯微鏡(OM)、掃描電子顯微鏡(SEM)、能譜儀(EDS)、常溫拉伸實驗、高溫拉伸及蠕變等實驗手段,研究了Ti、Al對鎳基耐蝕合金的微觀組織、常溫和高溫性能等的影響,以及連鑄坯表面縱裂成因,探討Ti、Al在該合金中的作用機理。主要結(jié)論如下:(1)對于鎳基耐蝕合金試樣,若C、N含量不變,隨著Ti、Al的加入及Ti含量不斷提高,合金基體相γ的凝固點降低,η相和Ti(C,N)的析出溫度和析出量都得到明顯提升,Ti、Al元素可能影響了合金的再結(jié)晶行為,使固溶處理后的晶粒變得更細小,而且能形成數(shù)量更多、分布更密集、總體積分數(shù)更大的Ti(C,N)類析出物。(2)在常溫性能方面,Ti和Al可以明顯提升該合金的常溫強度及硬度,強化的機制主要是細晶強化。在高溫性能方面,在800-1300℃,合金強度隨溫度升高而下降,由于動態(tài)再結(jié)晶,950℃以上時, Ti和Al對強度的影響基本被消除;在800-1150℃,Ti含量越高,合金高溫塑性越好,但1150℃以上塑性開始下降,且Ti含量越高的合金下降得更快,斷裂機制從韌窩斷裂轉(zhuǎn)變?yōu)檠鼐Т嘈詳嗔选T谌渥冃阅芊矫?,Ti、Al含量的提高會明顯減小固溶處理后試樣的晶粒尺寸,因此降低了合金在760℃時的蠕變極限,晶粒尺寸是影響等強溫度以上的蠕變性能的關(guān)鍵因素。(3)N08810合金連鑄坯凝固組織是單相奧氏體,主要以粗大的柱狀晶為主的。初始凝固階段時坯殼溫度較高,粗大的柱狀晶之間連接比較薄弱,在受到垂直于柱狀晶生長方向應(yīng)力的作用下,首先在柱狀晶晶界處形成裂紋。在晶界上析出的脆性相TiC也提供了一個裂紋進一步沿著薄弱的柱狀晶晶界擴展的通道,zui終形成宏觀上縱向裂紋。
一種粉末冶金工藝制備耐磨耐蝕合金棒材的方法,其特征在于,所述耐磨耐蝕合金為鐵基合金,該方法包括以下制備步驟:步驟一、通過粉末冶金工藝制備鐵基合金粉末;步驟二、取一端開口的圓柱形熱等靜壓包套,熱等靜壓包套直徑為30~600mm,熱等靜壓包套中心位置固定有碳素鋼或不銹鋼圓形棒材,中心棒材直徑為20mm#300mm,將鐵基合金粉末裝填于沿中心棒材與熱等靜壓包套之間厚度為10~300mm的環(huán)形空隙中振實;步驟三、對熱等靜壓包套進行抽真空脫氣處理,抽真空過程對熱等靜壓包套加熱保溫,熱等靜壓包套脫氣后繼續(xù)加熱保溫,隨后對熱等靜壓包套端部進行封焊處理;步驟四、對脫氣并封焊后的熱等靜壓包套進行熱等靜壓處理,待熱等靜壓包套內(nèi)鐵基合金粉末*致密固結(jié)并與中心棒材緊密結(jié)合后隨爐冷卻,車削去掉外表面熱等靜壓包套層,制得耐磨耐蝕合金棒材。一種薄壁內(nèi)覆耐蝕合金復(fù)合管的晶間腐蝕試驗方法,其特征在于,所述薄壁內(nèi)覆耐蝕合金復(fù)合管的覆層厚度≤2mm,所述晶間腐蝕試驗方法包括薄壁內(nèi)覆耐蝕合金復(fù)合管晶間腐蝕試樣的制備方法及腐蝕后的評價方法,具體按照如下步驟進行操作:1)選樣:按照金相試樣制備的規(guī)定選取試樣,且試樣中包含耐蝕合金平面;2)熱鑲嵌:采用熱塑性丙烯酸樹脂粉末鑲嵌所述試樣,然后在25~35MPa下,加熱到180℃,保持3.5~4min,將試樣冷卻到常溫,或采用熱固性環(huán)氧樹脂粉末鑲嵌所述試樣,然后在25~35MPa下,加熱到180℃,保持3.5~4min,將試樣冷卻到常溫;3)腐蝕:步驟2)得到的試樣采用不銹鋼硫酸?硫酸銅腐蝕試驗方法進行晶間腐蝕試驗,試驗后取出試樣,洗凈,干燥;4)裂紋觀察:將步驟3)得到的試樣進行磨制、拋光,再浸蝕后,得到用于裂紋觀察的樣品,然后將上述樣品在金相顯微鏡下觀察是否出現(xiàn)晶間腐蝕裂紋。應(yīng)用泰曼定律,確定出由質(zhì)量百分因子法設(shè)計的Ni-Cr-Mo-Cu耐蝕合金的成分組成以及質(zhì)量百分因子數(shù)的取值范圍,選用質(zhì)量百分因子數(shù)(APF值)分別為1.5,2.875,3.3,3.8,4.3的五種固溶體Ni-Cr-Mo-Cu耐蝕合金作為合金腐蝕特性的研究試樣。為考察該系列合金在大氣中的腐蝕通用性,另外制備了4種不同含銅量的合金,用于研究合金的氧化腐蝕特性。具體內(nèi)容如下:1)對4種不同含銅量的合金和APF=2.875的合金,在空氣中進行氧化實驗和高溫實驗,分析合金的氧化腐蝕特性及其在空氣中的氧化腐蝕通用性;2)對不同APF值的合金,在溫度為20℃、濃度為0.002mol/cm~3,0.004 mol/cm~3,0.006 mol/cm~3,0.008 mol/cm~3,0.01 mol/cm~3,0.012 mol/cm~3的鹽酸溶液中腐蝕反應(yīng)的陰極過程進行線性電位掃描,依據(jù)極化曲線,確定出五種合金在不同濃度鹽酸溶液中腐蝕時的交換電流密度、腐蝕電位、電子交換數(shù)、反應(yīng)級數(shù)和速率常數(shù)。并分別建立這些動力學(xué)參數(shù)與鹽酸濃度、質(zhì)量百分因子數(shù)(APF參數(shù))的實驗,據(jù)此評價合金對鹽酸溶液的耐腐蝕能力,歸納其耐腐蝕能力隨鹽酸溶液濃度、合金質(zhì)量百分因子數(shù)的變化而變化的關(guān)系;3)對不同APF值的合金,在溫度為20℃、濃度從0.002mol/cm~3到0.012 mol/cm~3的硫酸溶液中腐蝕反應(yīng)的陰極過程進行線性電位掃描。針對合金陰極反應(yīng)的兩種機理(在低濃度時,為氫離子的還原;在高濃度時,為水分子的還原)分別分析陰極過程動力學(xué)。依據(jù)陰極極化曲線,確定出機理轉(zhuǎn)變濃度和不同反應(yīng)機理時的動力學(xué)參數(shù),建立這些動力學(xué)參數(shù)與溶液濃度和質(zhì)量百分因子數(shù)的實驗。據(jù)此鑒別合金對硫酸溶液的耐腐蝕能力,歸納其腐蝕能力隨硫酸溶液濃度、合金質(zhì)量百分因子數(shù)的變化而變化的關(guān)系;4)對不同APF值的合金,在溫度為20℃、濃度為0.0025mol/cm~3,0.0050 mol/cm~3,0.0075 mol/cm~3,0.0100 mol/cm~3,0.0125 mol/cm~3,0.0150mol/cm~3的氫氧化鈉溶液中腐蝕反應(yīng)的陰極過程進行線性電位掃描,通過極化曲線,確定出鈍化膜形成過程中的隧穿常數(shù)、鈍化電位、隧穿電流和鈍化膜厚度等動力學(xué)參數(shù),建立這些參數(shù)與氫氧化鈉濃度、質(zhì)量百分因子數(shù)的實驗,據(jù)此鑒別合金對氫氧化鈉溶液的耐腐蝕能力,歸納耐腐蝕能力與氫氧化鈉溶液濃度、質(zhì)量百分因子數(shù)的變化而變化的關(guān)系。zui后,對系列合金的電化學(xué)腐蝕電流密度進行理論上的定量分析。為此用D8-ADVANCE型衍射儀,對五種合金進行X射線衍射試驗,確定合金的晶體結(jié)構(gòu)。應(yīng)用Rietveld方法進行晶體結(jié)構(gòu)精修,獲得高精度的晶體結(jié)構(gòu)參數(shù)。使用Materials Studio 4.0材料計算軟件,計算合金的費米能、電子態(tài)密度。應(yīng)用量子電化學(xué)電流密度計算模型,定量分析電化學(xué)腐蝕電流,揭示系列Ni-Cr-Mo-Cu耐蝕合金的耐腐蝕能力隨質(zhì)量百分因子數(shù)成規(guī)律性變化的結(jié)構(gòu)原因。
環(huán)保在線 設(shè)計制作,未經(jīng)允許翻錄必究 .? ? ?
請輸入賬號
請輸入密碼
請輸驗證碼
請輸入你感興趣的產(chǎn)品
請簡單描述您的需求
請選擇省份